Investment Potential: 2019 GC3 Technology Showcase Finalists

Creating an innovation ecosystem for green chemistry technologies

Members of the GC3 Startup Network Include:

Investment Potential Panel GC3 Innovators Roundtable May 8, 2019

4th Annual GC3 Technology Showcase & Pitch Competition

Panelists

Al Iannuzzi, Estée Lauder Companies, Inc. Chris Killian, Eastman Chemical Company Martin Mulvihill, Safer Made Brian Stubbert, Dow

2019 GC3 Startup Pitch Competition

Alligator Alley

Synthetic Biology Enabled Manufacturing

Intentine licetur

Paul Petersen Vice President ppetersen@visolisbio.com (508) 769-5159

Visolis

CARBON NEGATIVE MATERIALS

GC3 Technology Showcase May 8, 2019

Team

Talented team with key scientific advisors to commercialize bio-based manufacturing

Our Team

Dr. Deepak Dugar, Founder and CEO Ilii iit delhi 🖓 🔤 pwc

Erik Rutten, VP, Business Development

🔊 dsm

Paul Petersen, VP, Sales

bioamber

EASTMAN


Dr. Lin Louie, Director of Catalysis

Berkeley

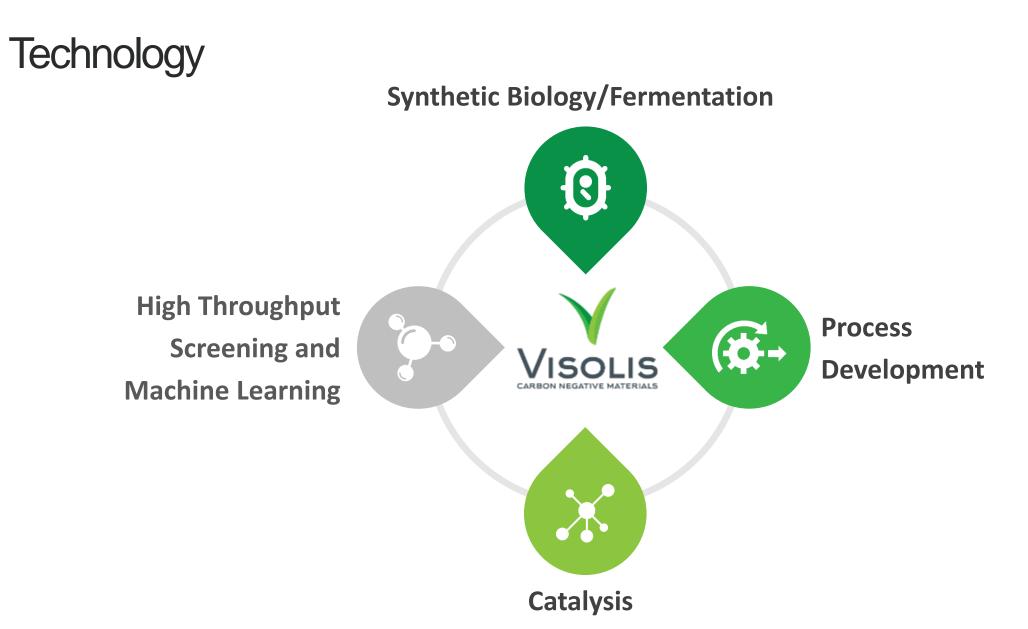
Dr. Brian Lee, VP, Biotechnology

Scientific Advisors

Dr. Larry Evans (aspentech l'lii T

Prof. Jay Keasling

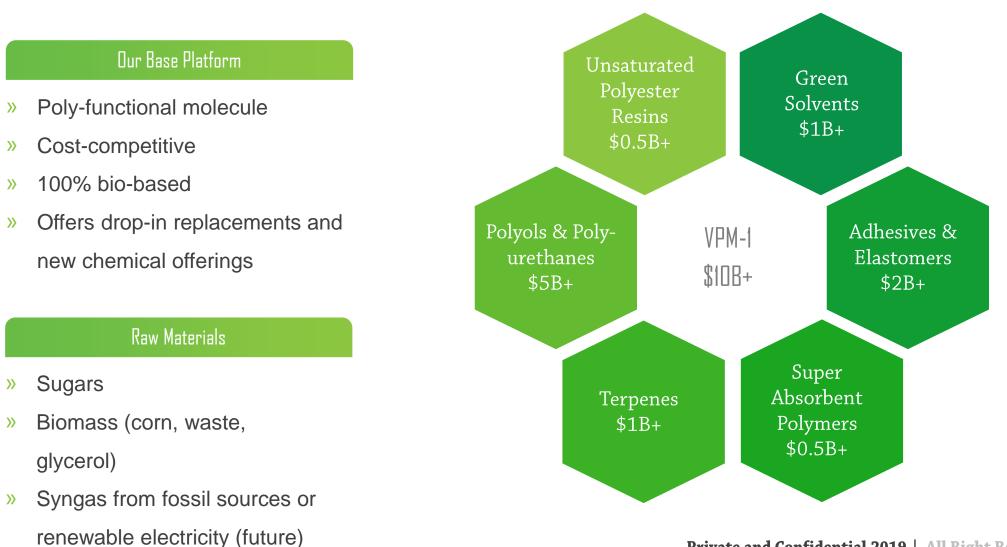
A MYRIS.



Prof. F. Dean Toste

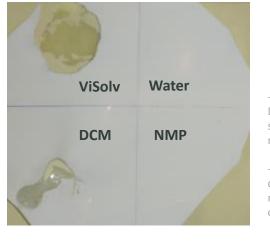
Berkeley Caltech

Company Highlights


- 15 full time scientists and engineers in Berkeley, CA and • **Geleen**, Netherlands
- Additional 10+ FTE contractors •
- Acquired fermentation assets in Canada with replacement ۲ value of USD 170 million

Platform Applications

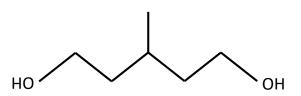
Our first platform molecule (VPM-1) can reach broader opportunities exceeding \$10 billion in market size


11

Application Examples from VPM-1

New Green Solvent and Drop-In Building Block Molecule

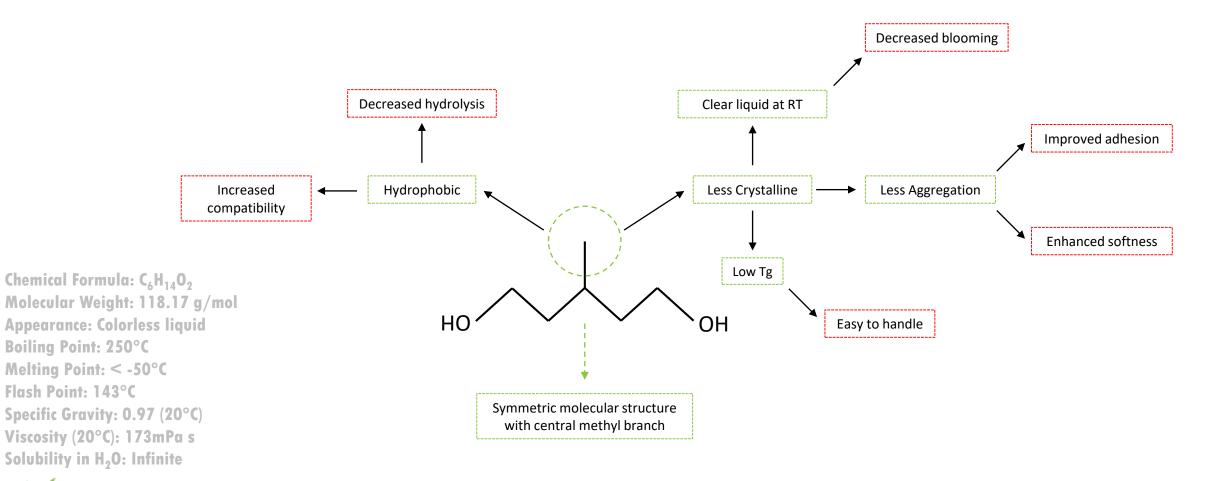
New Green Solvent with Performance Advantages


- » Aggressive Solvent: Similar to Dichloromethane (DCM) and N-Methyl Pyrrolidone (NMP) in Hansen solubility space
- » Can dissolve high performance polymers like PES, PAN, PVC, Polycarbonate
- » New application potential in polymer recycling and processing

- 50 ul of ViSolv, NMP, DCM and water were spotted on a PES membrane for 10 sec.

- ViSolv rapidly dissolves the membrane relative to other solvents.

Bio-Based Diol Offering Drop-In Replacement



- » MPD (3-Methyl-1,5-pentanediol) is low viscosity liquid C6 diol
- » Used in production of specialty inks, coatings and performance adhesives
- » Limited market supply due to expensive production via traditional petro-chemical routes
- » Visolis technology enables less costly, new bio-based route

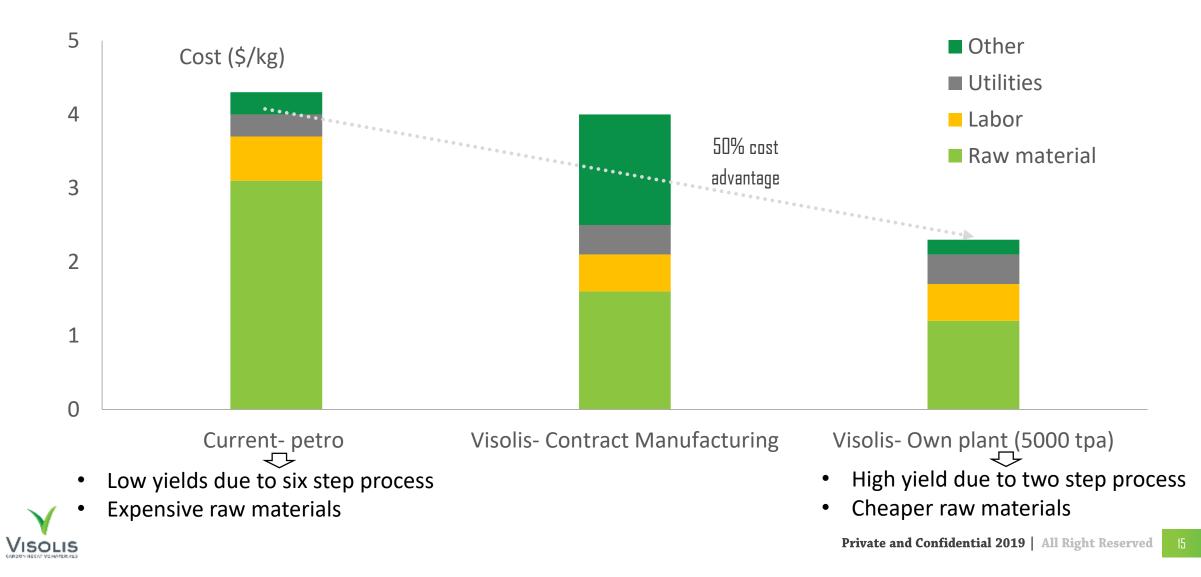
MeVol[™] - MPD (3-Methyl-1,5-pentanediol)

Bio-based diol with unique molecular structure; leading to advantages in a wide range of applications

Specialty Polymer Precursor

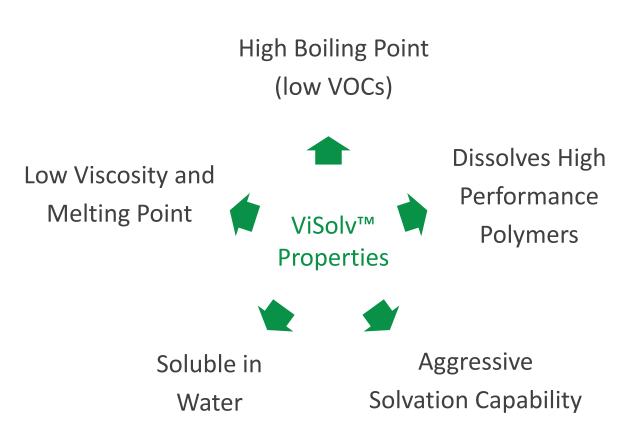
ISOLIS

MeVol[™]: Key diol monomer for high performance polyurethanes, polyesters and polycarbonate polyols


Softness Low viscosity Adhesion Mevol™ : Key building block with range of applications High UV stability Wide Solubility

Market Overview

- » Mevol is used in making specialty inks, coatings and high performance adhesives today
- » It is very expensive to make via traditional petrochemical routes
- » Visolis technology enables reduction in cost of manufacturing


Significant Competitive Advantage Due to Low Cost Position

Compared to existing sole supplier

High Performing Solvent - ViSolv™

New bio-based high performing solvent made from renewable feedstocks

Product Summary

- » High boiling point (above 230°C)
- » Low melting point (below -20°C)
- » Low viscosity (3cps viscosity) liquid at room temperature

Market Overview

- Competitively priced to similar solvents
 currently used in the industry
- Potentially better health hazard profile
 relative to toxic high-performance solvents

ViSolvTM

Similar to NMP (N-methyl pyrrolidone) and DCM (dichloromethane) in Hansen Solubility Space

Solvent	δD	δΡ	δН	Distance
ViSolv	17.4	9.8	7.4	0
DCM	17.0	7.3	7.1	2.6
NMP	18.0	12.3	7.2	2.8
Cyclohexanone	17.8	8.4	5.1	2.8
1.4-Dioxane	17.1	6.8	7.8	3.1
МЕК	16.0	9.0	5.1	3.7
Acetone	15.5	10.4	7.0	3.9
1,3-Dioxolane	18.1	6.6	9.3	3.9
Dibasic Esters	16.2	6.5	8.4	4.2
THF	16.8	5.7	8.0	4.3
Butyl Benzoate	18.3	5.6	5.5	4.9
Methyl Acetate	15.5	7.2	7.6	4.6
DMF	17.4	13.7	11.3	5.5
Ethyl Acetate	15.8	5.3	7.2	5.5

ViSolv[™]

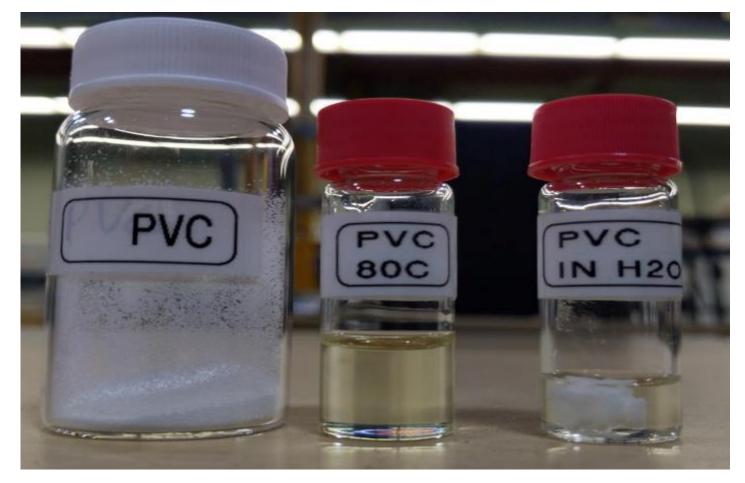
Ability to dissolve high performance polymers like PES, PAN, and PEI

Solvent Spotting on PES Membrane

6	
ViSolv	Water
DCM	NMP
A The	

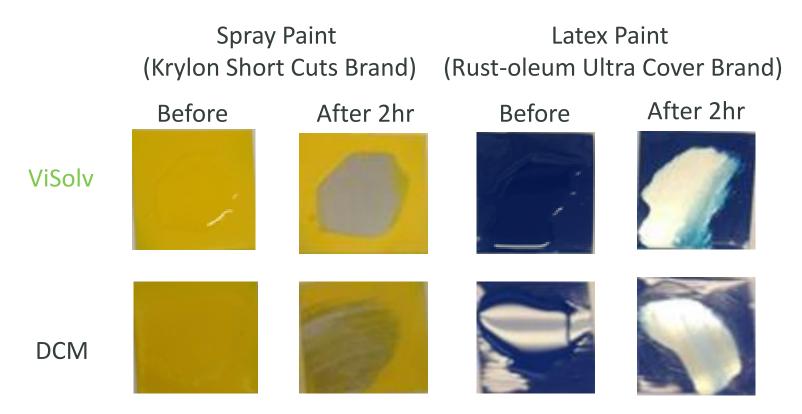
Polymer	Dissolved (Y/N)	Polymer	Dissolved (Y/N)	PEI: Polyether imide PVA: Polyvinyl acetate PVB: Polyvinyl butyral PS: Polystyrene PMMA: Polymethyl m
PEI, 80°C	Y	PEI, 150°C	Y	PVC: Polyvinyl chlorid PLA: Polylactic acid
PVA, 80°C	Y	PVA, 150°C	Y	PC: Polycarbonate PAN: Polyacryolnitrile
PVB, 80°C	Y	PVB, 150°C	Y	PAI: Polyamide imide PPS: Polyphenylene s PEEK: Polyether ether
PS, 80°C	Y	PAI, 150°C	Y	PVDF: Polyvinylidene PES: Polyether sulfon
PMMA, 80°C	Y	Nylon, 150°C	Y	
PVC, 80°C	Y	PS, 150°C	Y	
PLA, 80°C	Y	PMMA, 150°C	Y	
PC, 80°C	Y	PVC, 150°C	Y	
PAN, 80°C	Y	PEEK, 150°C	N	
PPS, 80°C	Ν	PVDF, 80°C	N	

vl acetate yl butyral ne methyl methacrylate vl chloride ic acid onate yolnitrile de imide nylene sulfide her etherketone nylidene fluoride er sulfone


• 50 ul of ViSolv, NMP, DCM and water were spotted on a PES membrane for 10 sec.

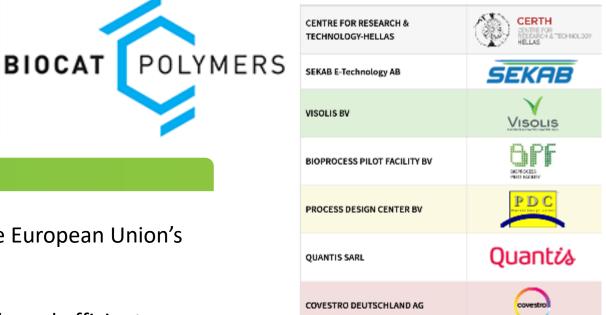
• ViSolv rapidly dissolves the membrane relative to other solvents.

Recycling of high performance polymers using anti-solvents


From L to R:

- 1) PVC standard
- 2) 10% PVC dissolved in ViSolv[™] at 80°C
- PVC precipitation on mixing solution 2 with H₂O as anti solvent.

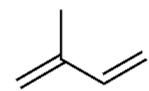
Increased Ability to Remove Paints compared to Dichloromethane (DCM)

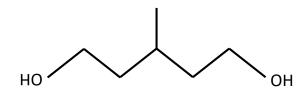


- Metal flashings were painted with craft spray paint and latex brush-on paint and cured for 24 hours.
- Solvent was applied, let to sit for two hours, and wiped off

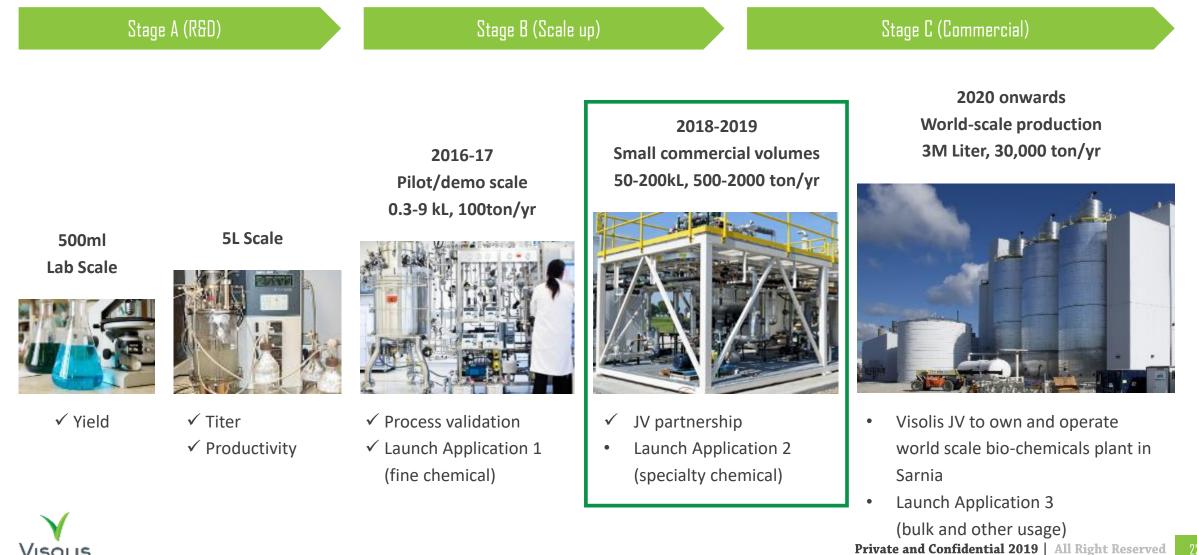
BioCat Polymers Consortium

EU Funded project to bring bio-chemicals to market

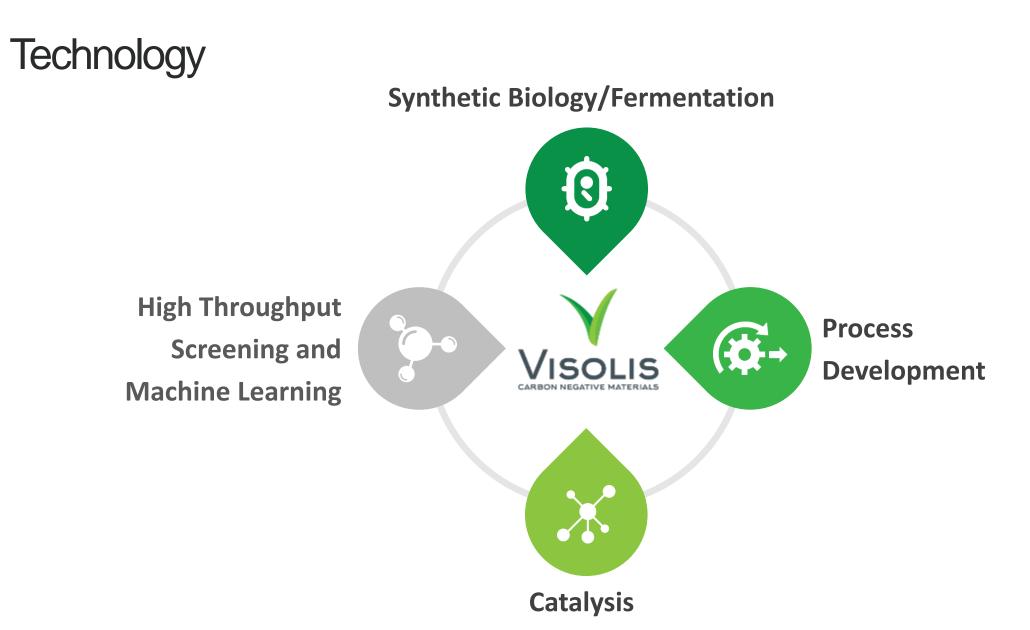



» BioCatPolymers is a 3-year European project funded by the European Union's
 Horizon 2020 research and innovation program

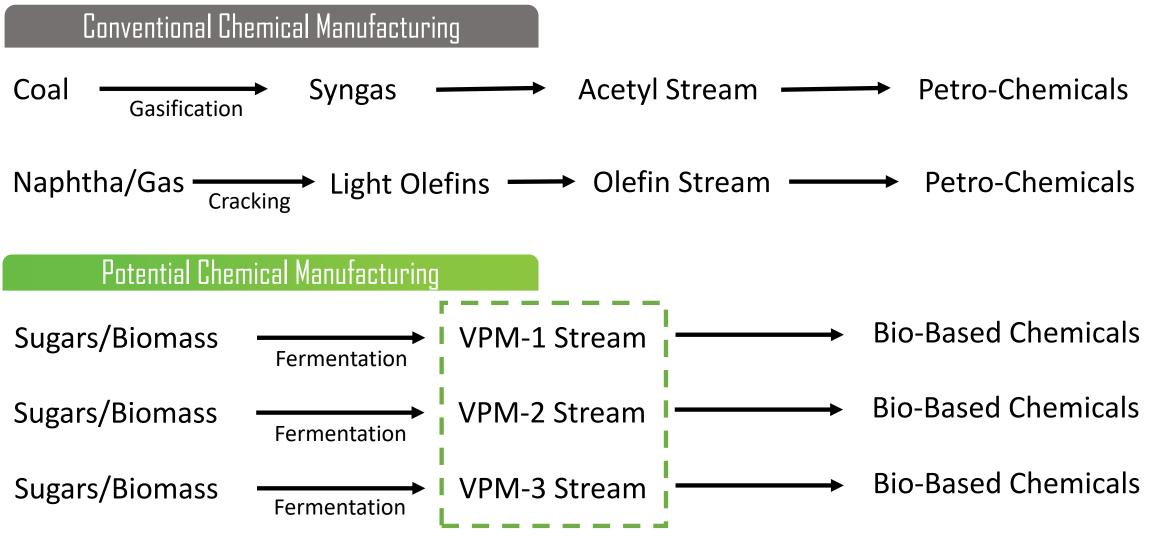
Summary


- The objective is to demonstrate a cost-effective, sustainable and efficient cascade technological route for the conversion of low-value, low-quality residual biomass to bio-polymers with equal or better performance than their fossil-based counterparts
- » Specifically focused on two monomers:
 - » Isoprene
 - » 3-MPD

BioCat Polymers Workshop takes place on May 15, 2019 in Delft, Netherlands!! Free to attend!!



Scale-Up: Concept to Commercial Production in Just 2 years


22

The Future?

Grants, Awards & Investments

\$15 Million in total funding till date and more in pipeline

NASDAQ

United States Department of Agriculture

Awards

Grants

Contact Info: Paul Petersen Vice President ppetersen@visolisbio.com (508) 769-5159

Synthetic Biology Enabled Manufacturing

Intentine licetur

Paul Petersen Vice President ppetersen@visolisbio.com (508) 769-5159

Visolis

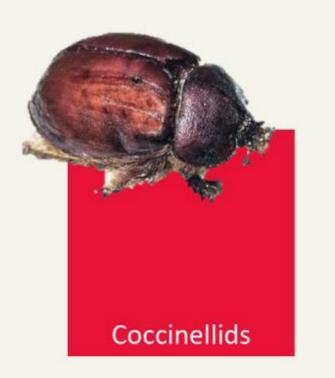
CARBON NEGATIVE MATERIALS

GC3 Technology Showcase May 8, 2019

Alligator Alley

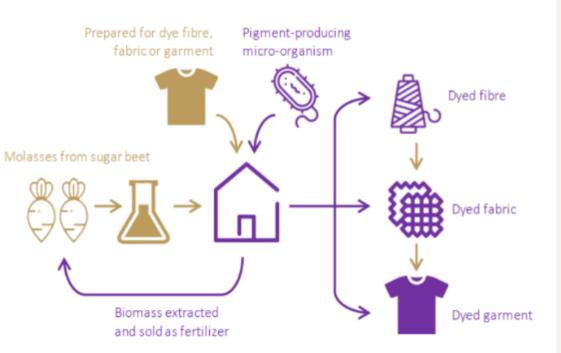
Sustainable textile dyeing with synthetic biology

We are the only dyeing technology that exclusively uses renewable resources


Green Chemistry & Commerce Council, 8 May 2019

Dr David Nugent Chief Commercial Officer

NATURAL PIGMENTS



OUR SOLUTION

- → Microorganisms engineered to produce, transfer and fix pigments onto substrate
- ightarrow Zero hydrocarbons. Less water. Less energy.
- ightarrow No hazardous chemicals
- ightarrow Industrial fermentation. Existing dye machines
- ightarrow Natural and synthetic fibres
- ightarrow Excellent performance

VALUE PROPOSITION

ightarrow We meet all primary customer requirements in a market searching for sustainable solutions

Primary customer need	Colorifix USPs
Sustainable Dyeing solutions that minimally impact the natural environment	Low-value agricultural by-products converted into pigments and dyed textiles. Zero hydrocarbons. Less water. Less energy. No hazardous chemicals.
Scalable Processes that can be scaled to >500kg per dyeing batch	Pigments will be grown using industrial fermenters and transferred using existing dye machines
Affordable Minimal or zero cost premium over conventional synthetic pigments	Minimal cost premium over synthetic pigments
Wide range of fabrics Applicable to widest range of synthetic and natural fibres	Uniquely capable of dyeing both natural and synthetic fibres
High performance Replicate or improve upon the durability of synthetic pigments	Meets or even exceeds the wash fastness of synthetic pigments
Wide colour palette Replicate or exceed the colour range of synthetic pigments	Nature is our palette. Almost any pigment found in Nature can be replicated using the Colorifix process

Hi David,

Disperse dyes are again going to increase in price due to the further Chinese chemical plant explosion and again we face shortages in supply.

We are keen to support in any way we can, to develop a working relationship going forward as an industrial partner and to promote your technology.

It is clear there is an urgent need for the whole dyestuff market to change. Dyestuff production is currently not sustainable on an economic basis and more importantly definitely not on an environmental level. Thanks

Dyehouse Technical Manager Email received 24 April 2019

COLORIFIX, UK

Problem: Dying textiles is typically incredibly waterintensive, with chemical runoff often seeping into water supplies. Solution: Colorifix's dye uses synthetic biology to engineer bacteria with dye-giving properties; the company claims this uses ten times less water than conventional dyeing.

FROM INNOVATION TO IMPACT

Daring innovation lives here. Through our Accelerator and Scaling Programmes, Fashion for Good helps to grow ideas that are shaping the future of the fashion industry. These innovations challenge us to rethink every step of how a product is made. Materials made from food wasts. Business models designed for renting and reselling. Technologies that "close the loop" so that old clothes can be turned into new ones. Because doing good is not simply doing loss bad; it is about creating technologies and systems that actively benefit us all.

entertainment

The Future of Fashion: Colorifix

2018 | 4 mins

Synopsis

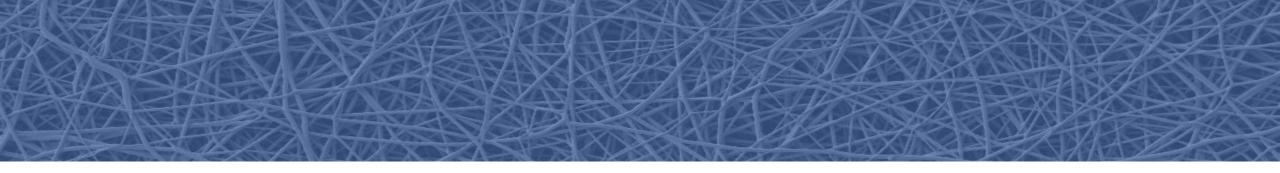
What started with an investigation into the water quality in Asia ended in the creation of a pollution-free dye. After residents in Nepal and Bangladesh found copious amounts of harmful chemicals in the water left by the textile industry, the engineers at Colorifix pioneered a way to reproduce the colours of the natural world using microorganisms that bind with fabric. Guided by nature, Colorifix offers a greener future for fashion.

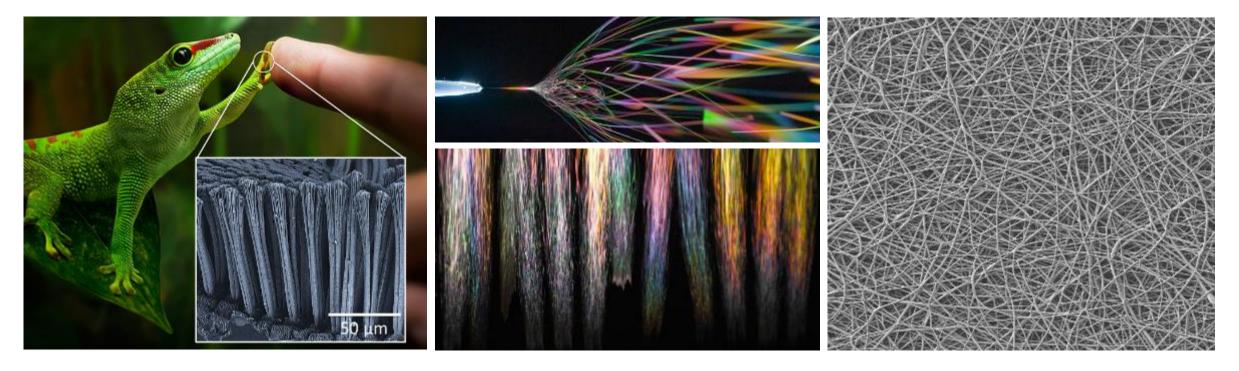
Sustainable textile dyeing with synthetic biology

We are the only dyeing technology that exclusively uses renewable resources

Green Chemistry & Commerce Council, 8 May 2019

Dr David Nugent Chief Commercial Officer


Alligator Alley



Creating Big Things from Small Fibers

Presented by Dr. Kevin White

Chief Operating Officer and Principal Scientist

The Recap

- Bio-inspired approach for adhesion
- Scalable and versatile manufacturing platform
- Re-founded in 2015 with NSF SBIR Phase II grant

The Struggles

- Translating lab-scale success
- "Dancing with elephants"

The Progress

- Scale-up in 2018 how to qualify?
- Process "lock" in November
- Customer "re-discovery"

→ C

 A https://www.thepinless.com/shop

Shop

ALL

PINLESS PICS PINLESS PLUS PINLESS POST PINLESS PRO

from \$10.00

Pinless Pics Premium

Gloss Inkjet Photo Paper

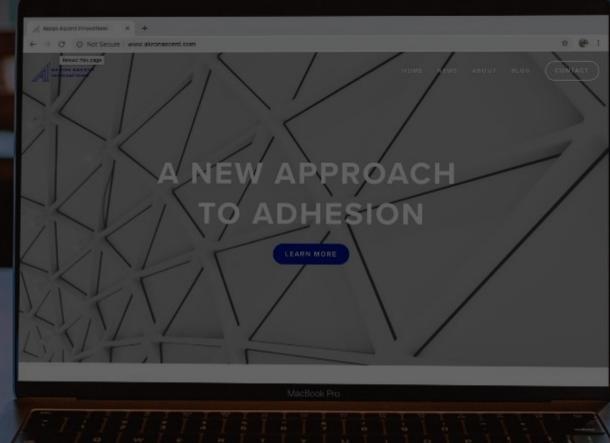
from \$7.50


Pinless Pics Matte Inkjet Photo Paper from \$10.00

The Launch

Pinless[™] Brand Products

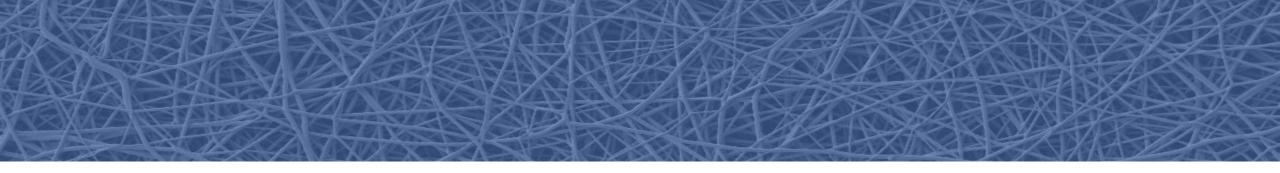
-


Pinless 80# Gloss Cover Digital Paper

Pinless Plus White Dry Erase Board Trial Pack \$25.00 John <Joh. May 7, 2019, 6:32 PM (15 hours ago) ☆ ▲ : to me, Barry ▼

I had my first couple meetings today. One customer said, "I have people who will go 'ape s*%t' when they see this!" I took this as a positive sign. When I am back on Friday perhaps we could connect on the phone to discuss?

The Future


- Expanding pipeline for existing product
- Partnerships to guide development
- Advanced solutions to drive value add

Let's keep in touch

AkronAscent.com • ShearGrip.com • ThePinless.com

kevin@AkronAscent.com

Creating Big Things from Small Fibers

Presented by Dr. Kevin White

Chief Operating Officer and Principal Scientist

Alligator Alley

